Optimal finite difference grids for direct and inverse Sturm–Liouville problems

نویسندگان

  • Liliana Borcea
  • Vladimir Druskin
چکیده

We study finite difference approximations of solutions of direct and inverse Sturm–Liouville problems, in a finite or infinite interval on the real line. The discretization is done on optimal grids, with a three-point finite difference stencil. The optimal location of the grid points is calculated via a rational approximation of the Neumann-to-Dirichletmap and the latter converges exponentially fast. We prove that optimal grids obtained for constant coefficients are asymptotically optimal for variable coefficient direct problems. We also show that optimal grids, together with methods of inverse spectral problems for Jacobi matrices, can be used for the solution of continuous inverse Sturm–Liouville problems. In particular, we formulate and analyse a new inversion algorithm, where the unknown coefficients that we image are optimally discretized. We prove that optimal grids provide necessary conditions for convergence of the discrete inverse problem and we demonstrate the effectiveness of our imaging approach through numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Sturm--Liouville problems using three spectra with finite number of transmissions and parameter dependent conditions

‎In this manuscript‎, ‎we study various by uniqueness results for inverse spectral problems of Sturm--Liouville operators using three spectrum with a finite number of discontinuities at interior points which we impose the usual transmission conditions‎. ‎We consider both the cases of classical Robin and eigenparameter dependent boundary conditions.

متن کامل

Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions

This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...

متن کامل

Inverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions

In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining  a new Hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

متن کامل

Inverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems

In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results  how that the simplicity and efficiency of this method.

متن کامل

Inverse Sturm-Liouville problem with discontinuity conditions

This paper deals with the boundary value problem involving the differential equation begin{equation*}     ell y:=-y''+qy=lambda y,  end{equation*}  subject to the standard boundary conditions along with the following discontinuity  conditions at a point $ain (0,pi)$  begin{equation*}     y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x),  a_1 , a_2$ are  rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002